cohomology - definitie. Wat is cohomology
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is cohomology - definitie


Cohomology         
SEQUENCES OF ABELIAN GROUPS ATTACHED TO A TOPOLOGICAL SPACE
Cohomology group; Betti cohomology; Singular cohomology; Cohomology theory; Generalized cohomology theory; Cohomology classes; Cohomology class; Extraordinary cohomology theory; Cohomology theories; Cohomology groups; Integral cohomology group; Cochain (algebraic topology); Generalized cohomology theories; Cohomological; Extraordinary cohomology theories; Extraordinary homology theory; Cohomologies; Generalized cohomology; Higher cohomology; Multiplicative cohomology theory; Differential cohomology; Generalized homology theory
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology.
Čech cohomology         
  •  accessdate = January 16, 2014}}</ref>
COHOMOLOGY THEORY BASED ON THE INTERSECTION PROPERTIES OF OPEN COVERS OF A TOPOLOGICAL SPACE
Cech cohomology; Čech cocycle; Chech cohomology; Cocycle condition
In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.
Deligne cohomology         
In mathematics, Deligne cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordinary cohomology and intermediate Jacobians.